Friday, 17 September 2021

Inspiration4 Crew Dragon over the old Leiden Observatory

click to enlarge
 

The image above, which I shot yesterday evening (16 September 2021) around 19:24 UT, shows the SpaceX Crew Dragon Inspiration 4 with astronauts Hayley Arceneaux, Christopher Sembroski, Sian Proctor and Jared Isaacman onboard, over one of the domes of the old Leiden Observatory. This observatory is located in the center of Leiden, the Netherlands, close to my home.

The photograph is a stack of 37 1-second images taken between 19:24:05 and 19:25:19 UT with a Canon EOS 80D and EF 2.5/50 mm lens (at 800 ISO). The dome is the dome of the 50-cm Zundermann telescope. The brightest "star" is Jupiter, and the second trail near the bottom of the image next to the dome is an aircraft.

Inspiration 4 is the first Crew Dragon mission that was not commissioned by NASA and does not go to the International Space Station. Instead it will orbit for 3 days at an altitude of 570 x 580 km. The orbital plane is inclined by 51.6 degrees and does match the ISS orbital plane, although not the ISS orbital altitude. It was chosen so that the launch could use existing emergency and abort facilities on the launch track. 

Inspiration4 (2021-084A) was launched from pad 39A at Cape Canaveral on 16 September 2021 at 00:02:56 UT. The launch coincided, with a difference of only a few minutes, with a pass of the ISS:


 

While I was photographing the pass (which was a low elevation pass in late twilight at 25 degrees maximum elevation) from a spot at the Witte Singel opposite the observatory, my video setup was running on an automated schedule from my loft window and captured the spacecraft as well (WATEC 902H2 Supreme camera with 1.4/35 mm lens at 25 fps):


An upcoming Trident-II D5 SLBM test in the Atlantic

click map to enlarge

A few days ago a Navigational Warning (NAVAREA IV 838/21, also issued as HYDROLANT 2336/21) appeared which points to an upcoming Trident-II D5 SLBM (Submarine-Launched Ballistic Missile) test from a US or Royal Navy SSBN on the Atlantic Eastern Missile Range between 12:30 UT on September 17, and 1:23 UT on Sept 20. The distance between the launch area and MIRV target area is about 9900 km.

This is the text of the Navigational Warning (the map in top of this post shows them mapped, along with a simple ballistic trajectory):

151459Z SEP 21
NAVAREA IV 838/21(11,24,26).
ATLANTIC OCEAN.
FLORIDA.
1. HAZARDOUS OPERATIONS 171230Z THRU 200123Z SEP
   IN AREAS BOUND BY:
   A. 28-56N 079-59W, 29-02N 079-53W,
      29-06N 079-37W, 28-59N 079-10W,
      28-37N 079-10W, 28-36N 079-35W,
      28-45N 079-56W.             
   B. 28-24N 076-44W, 28-42N 076-42W,
      28-21N 074-40W, 28-06N 074-44W.
   C. 27-27N 071-21W, 27-52N 071-15W,
      27-25N 068-46W, 26-54N 068-54W.
   D. 17-22N 044-54W, 18-33N 044-32W,
      16-54N 040-55W, 16-00N 041-23W.
   E. 09-00S 003-51W, 08-22S 003-22W,
      12-35S 002-40E, 13-05S 002-19E,
      11-56S 000-16E, 12-09S 000-16W,
      11-34S 000-20W.
2. CANCEL THIS MSG 200223Z SEP 21.

The launch area (area A) is one of two launch areas used for these kind of tests in the Atlantic (see an earlier post from 2019 analyzing several of these launches). It is the variant closest to the Florida coast, one which I suspect is used when the launch has an 'audience' of officials.

The area is close enough to the Florida coast that Florida east coast residents might see the launch, as has previously happened.

The target area is the regular target area in the southern Atlantic some 1000 km out of the coast of Angola.

Areas B, C and D are where the first, second and third stage splash down.

 

 

The location of the hazard areas does not match a simple ballistic trajectory well (such a trajectory is indicated by the line in the map in the top of this post), which might point to some mid-flight manoeuvering of the MIRV-bus.

The test launch is probably a DASO ("Demonstration and Shakedown Operation"), done to recertify the readiness of the submarine and its crew after major overhauls. One candidate submarine for this test launch is the Ohio-class SSBN USS Tennessee (SSBN 734) which reportedly completed a major overhaul at Kings Bay on July 1. [EDIT 18 sept 2021 15:45 UT: it actually was USS Wyoming, which fired two Trident missiles as part of the test]

 

UPDATE 18 Sep 2021 15:45 UT

The US Navy has announced that as part of DASO-31, the Ohio-class SSBN-742 USS Wyoming has fired two Trident missiles on September 17th.

image: US Navy/David Holmes
image US Navy/David Holmes



Tuesday, 14 September 2021

PAN (NEMESIS 1) is on the move again

Pan on August 8/9, 2021, imaged from Leiden. Click image to enlarge

Five years ago, in 2016, I wrote a long article in The Space Review titled "A NEMESIS in the sky: PAN, Mentor 4 and close encounters of the SIGINT kind". The primary subjects of that article were two SIGINT satellites: PAN (Nemesis 1) and Mentor 4.

In the article, I discussed what we had observed and deduced about PAN as amateur trackers, to what had been recently revealed about PAN by leaked documents from the Snowden files.

In the article I documented the frequent movements of PAN (2009-047A): for four years between its launch in September 2009 and mid 2013, PAN, very unusual for a geosynchronous satellite, was roving from location to location, each time being put close to a satellite for commercial satellite telephony.
For information on the "why" of that, and the larger context of it (a new kind of SIGINT information gathering), I refer to the earlier mentioned Space Review paper which goes into details.

Mid-2013, four years after launch, the frequent relocations stopped. For 8 years, the position of PAN remained stable in longitude near 47o.7 E. It's roving days, snooping around and sniffing other satellites, were over. Until this year.  

Somewhere between 6 February and 7 May 2021, PAN started to move again, eastwards in longitude. Observed longitudes over the period May-August 2021 suggest a drift eastwards at about 0.025 deg/day

Assuming a stable drift, the move appears to have been initiated within a few days of 11 February, 2021.The last observation still showing PAN at 47.7 E was on 6 February 2021 (as it happens, our network did not observe it again untill early May 2021 when it had already moved eastwards by two degrees).

The diagram below (an updated version of one that appeared in my 2016 Space Review article) shows the positions in longitude that PAN has been taking up since its launch in 2006. Note the frequent relocations over the period 2009-2013, then the long stabilization at 47.7E, and the start of a new drift episode in 2021:

click diagram to enlarge


The question now is, what this drift since February means:

(1) Has it deliberately been brought into a drift state to move it to an eventual new position? 

(2) Has it reached end-of-life and been manoeuvered into a graveyard orbit?

A 'graveyard orbit' is usually an orbit that is located at least 235 km higher than a geosynchronous orbit. That does not appear to be the case here: if anything, the orbit seems to be a few km lower than it previously was. So it appears to be option (1).

It will be interesting to see whether PAN will stabilize its longitude at some point or not, and where that will be. Unfortunately, as it is drifting eastwards it is getting lower in my sky (currently, it is some 16 degrees above my local horizon), and there do not appear to be many other amateurs covering it currently.

It would be interesting to see whether radio observers can detect radio signals from PAN, which shortly after launch was emitting at frequencies similar to that of the "UFO" (UHF Follow On) constellation.


PAN on 2/3 June, 2021, imaged from Schiermonnikoog Island. Click to enlarge

Sunday, 12 September 2021

An Asteroid for Alice

 

 

As long-time readers of this blog know, I have been active in searching for Near Earth Asteroids (discovering two: 2005 GG81 and 2015 CA40). As part of that search, I also discovered a number of new Main Belt asteroids

A batch of these, that where discovered by Krisztian Sárneczky and me with the 60-cm Schmidt of MPC 461 Piszkéstető in Hungary in the period 2012-2016, are now well observed enough that they are getting permanent numbers issued by the MPC. Which means that we have the opportunity to suggest names for these asteroids to the IAU.

The first name we proposed was accepted and published by the Work Group on Small Body Nomenclature (WGSBN) of the International Astronomical Union (IAU) last week. 

It is with much pleasure that I can announce that asteroid (551014) = 2012 UU185 will henceforth be called:

 

(551014) Gorman

 

...after Dr Alice Gorman, a pioneer "Space Archaeologist" and senior Lecturer at Flinders University in Australia.

 

Dr Alice Gorman
 

Dr Alice Gorman is a pioneer in the field of Space Archaeology: the study of human material culture in space, and Space-Age related human material culture on earth (e.g. old launch or tracking sites). Some of you may know here from her book "Dr Space Junk vs the Universe" (if you don't know the book, I can warmly recommend it).

 The naming citation for the asteroid was published on 3 September 2021 in WSGBN-bulletin vol 1. nr 7 and reads:

(551014) Gorman = 2012 UU185 

Discovery: 2012-10-18 / K. Sárneczky, M. Langbroek * / Piszkéstető / 461 

Alice Gorman (b. 1964) is an Australian archaeologist and an expert in lithic analysis and Heritage management. She is one of the pioneers in the field of space archaeology, the study of human material culture in space and related material culture on Earth.


Asteroid (551014) Gorman was discovered on 18 October 2012 as a magnitude +19.2 object by Krisztian Sárneczky and me with the 60-cm Schmidt of MPC 461 Piszkéstető Observatory in the Matra mountains of Hungary. The animated GIF in the top of this post shows a 'blink' of a small part of the three discovery images (taken about 15 minutes apart). The asteroid can be seen as a faint moving dot in the center.

Our initial internal reference for the objects given on the night of discovery was object SaLa016. After submission to the MPC, it got the temporary designation 2012 UU185. In June this year, it was issued the permanent number (551014).

(551014) Gorman is an approximately 2 km wide asteroid (H = 15.9) that moves in the asteroid belt between Mars and Jupiter. It is a Main Belt IIIb type asteroid with perigee at 2.97 AU and an orbital inclination of 14 degrees. It takes the asteroid 5.8 years to complete one orbit around the sun.

 


It makes me very happy to have been able to name this asteroid after Alice!

Friday, 27 August 2021

First positive observations of the LED beacon of the NAPA-2 6U cubesat


 

On June 30, 2021, a Falcon 9 launched several cubesats in a rideshare launch called Transporter-2. One of the payloads was a 6U cubesat called NAPA-2

This cubesat was built by the Dutch company ISISpace in Delft (the same company that built Brik-II) for the Royal Thai Air Force. It is an IMINT satellite, carrying two small Earth observation camera's. It is in a 97.5 degree inclined sun-synchronous 520 x 540 km orbit with passes around local midnight and noon.

This is the NAPA-2 cubesat after assembly (image courtesy of ISISpace): the 6U cubesat measures about 10 x 20 x 30 cm.


image (c) ISISpace, used with permission.

NAPA-2 has an interesting novelty: it carries a beacon of 12 bright LED's that can be switched on and off by the satellite operators. 

It is an experiment to see if such a bright artificial lightsource on the satellite can aid in optically tracking it.

The past few days saw the commissioning of this feature. ISISpace had asked me whether I could try to image the LED beacon from Leiden. Attempts to image it were made on three nights. 

The first attempt, on August 24 using a 1.4/85 mm lens, was negative.

The second attempt was on August 25. The operators had reorientated the satellite such that the LED's were pointing at the groundstation. This attempt was marginally positive: it was seen but the satellite was extremely faint and barely visible and the trail was lost in the noise background in a frame stack.

A third attempt was made last night, in the early hours of 27 August. This time I used a more powerfull lens, the Samyang 2.0/135 mm. The camera was a WATEC 902H2 Supreme operating at 25 frames/s.

The result was a positive detection: the LED beacon of the satellite, although faint, was unambiguously imaged. The range to the satellite was 598 km during the observation. It was imaged around culmination at 61 degrees altitude in the east.

 

click to enlarge

 

Below is the video: the object, coming into the FOV from the right, is very faint, but visible. It disappears near the center of the image because the LED was switched off: the operators operated it is a "3-seconds-on, 1-second-off" mode last night.



Below is a framestack of 60 frames from the video (2.4 seconds of footage). A faint but unmistakable trail can be seen entering the FOV from the right: the LED beacon of NAPA-2! The bright star near the bottom of the image is 13 Persei.



Below is a negative image version of the same stack: and a positive version where I pushed the image such that the trail comes out better.

 

 

It should be noted that the cubesat was imaged in a part of it's trejactory where it was in Earth shadow: so all the light solely comes from the 12 LED's!

This is the LED array on the satellite (image courtesy of ISISPace):


image (c) ISISpace, used with permission.

Amazing that 12 LED's are visible from a distance of almost 600 km! 

The LED beacon does not operate continuously: it is only briefly switched on when passing over a tracking station (in this case, my observing location). It reaches an Rmag of about +10.

Below are the astrometric residuals relative to CSpOC elset 21239.30175625 (angles are in degrees, delta T in seconds), showing the good match:

     STA   YYday HH:MM:SS.sss   AZ     EL     XTRK     deltaT   Perr
( 1) 4353  21239 00:52:38.401   78.0   60.9   -0.02     0.02    0.023
( 2) 4353  21239 00:52:38.441   77.9   60.9   -0.02     0.04    0.033
( 3) 4353  21239 00:52:38.600   77.7   60.9   -0.02     0.03    0.030
( 4) 4353  21239 00:52:38.920   77.2   61.0   -0.02     0.03    0.025
( 5) 4353  21239 00:52:38.960   77.2   61.0   -0.02     0.06    0.044
( 6) 4353  21239 00:52:39.241   76.7   61.0   -0.02     0.03    0.031
( 7) 4353  21239 00:52:39.561   76.2   61.0   -0.02     0.03    0.031
( 8) 4353  21239 00:52:39.600   76.2   61.0   -0.02     0.05    0.044
( 9) 4353  21239 00:52:39.761   75.9   61.0   -0.02     0.03    0.025
(10) 4353  21239 00:52:39.801   75.9   61.0   -0.03     0.04    0.041

rms     0.03367


Friday, 6 August 2021

A weird Navigational Warning for a mass deorbit on August 9-10? [updated]

click map to enlarge
 

A weird Navigational Warning (NAVAREA XII 384/21) for "Space Debris" has appeared defining nine areas, some of them overlapping, in the Pacific for August 9, 16:27 to 17:29 UT and August 10, 17:16 to 18:17 UT.

I have mapped them in the map above. Below is the text of the Navigational Warning:

060929Z AUG 21
NAVAREA XII 384/21(GEN).
EASTERN NORTH PACIFIC.
1. HAZARDOUS OPERATIONS, SPACE DEBRIS
   091627Z TO 091729Z AUG, ALTERNATE
   101716Z TO 101817Z AUG
   IN AREAS BOUND BY:
   A. 22-52-40N 137-34-57W, 20-12-47N 134-02-08W,
      04-25-05N 146-28-48W, 06-54-48N 149-55-52W.
   B. 51-11-05N 141-36-54W, 49-40-18N 142-13-53W,
      50-44-15N 170-19-30W, 52-17-11N 170-39-50W.
   C. 12-58-15N 130-00-21W, 10-52-28N 127-06-04W,
      05-17-31S 138-47-34W, 03-13-54S 141-40-25W.
   D. 48-12-47N 135-38-42W, 46-20-17N 136-55-43W,
      50-55-14N 165-28-28W, 52-59-09N 165-19-24W.
   E. 13-53-47N 126-52-33W, 11-46-05N 123-56-09W,
      04-19-41S 135-37-56W, 02-14-45S 138-32-32W.
   F. 49-27-33N 135-51-45W, 47-43-47N 136-53-00W,
      50-56-51N 168-09-57W, 52-48-04N 168-20-28W.
   G. 14-27-06N 127-19-28W, 12-18-52N 124-23-30W,
      03-36-29S 136-03-34W, 01-31-24S 138-57-30W.
   H. 49-46-04N 136-40-41W, 48-05-08N 137-37-30W,
      50-55-01N 168-54-51W, 52-42-19N 169-08-13W.
   I. 31-49-12N 124-20-42W, 30-20-18N 122-34-43W,
      22-47-14N 130-25-52W, 24-10-15N 132-10-44W.
2. CANCEL THIS MSG 101917Z AUG 21.

The nine areas A to I cluster in basically three regions (which I have colour-coded in the map above).

The directions of the areas point to a series of deorbits from a 51-53 degree inclined Low Earth orbit. As I have indicated in the map in top of this post, two of the three defined regions with warning boxes line up with the ISS groundtrack during the two time windows given, but I think this is coincidence (and the series of boxes south of Alaska do definitely not line up with the ISS during these two time windows. In fact, this points to deorbits from at least two different orbital planes).

Rather, my suspicion is a mass deorbit of Starlink satellites, who move in ~53 degree inclined orbits [but see update below].

UPDATE: 

After some discussion, Jan Hindrik Knot rightfully questioned whether Starlink satellites, with their ion thruster propulsion, are capable of a controlled deorbit in a designated area at all. That is a good point, which I overlooked initially.

So it appears we have no idea what will be deorbitted on August 9-10.

The combination of the areas in the mid-Pacific and those south or Alaska, to me point to deorbits from at least two different orbital planes (both inclined 51-53 degrees).

Note that, from the position of the areas, the fact that their shapes clearly point to deorbits from Low Earth Orbit, and that the NavWarning mentions time windows on two successive dates, it is clearly not related to this deorbit  (the Spectr-R rocket booster) from Deep Space either.

UPDATE 2:

The plot thickens: the on-line KML version of the Navigational Warning has appeared and mentions: 

"Authority: NASA 300917Z JUL 21"

(the versions sent to subscribers to the service doesn't mention the authorities issuing the warnings).

So it appears to be something NASA-related (HT to @john_moe on Twitter).

One possibility could be that these are emergency landing zones for Starliner (which was to be launched on July 30, the date mentioned in the "Authority:" line: but was scrubbed). Still open questions though: why August 9 and 10? Why where these same zones not published before the July 30 launch date? Questions, questions...

UPDATE 3:

I like the suggestion by Bob Christy that these are warnings for the reentry of the Starliner service module (that is jetissoned from the Starliner capsule before landing of the latter). That makes sense.

Wednesday, 4 August 2021

Proton-M rb (2021-066B) reentry forecast (updated)

 (this post is updated when I have run new predictions)
click diagram to enlarge

The Proton-M third stage from the July 21 Nauka launch (see previous post) is coming down fast. The current reentry forecast models place the reentry into the atmosphere in the early hours of August 6 UT.

The diagram above shows CSpOC TIP data in red, and my own GMAT model results in black. My GMAT predictions in tabular form:

DATE         UT    +-        LAT    LON    orbit epoch
6-8-2021     9:55  1.8  day                28-7-2021 12:12
6-8-2021    16:51  1.7  day                29-7-2021 06:01
6-8-2021     9:18  1.4  day                30-7-2021 04:16
6-8-2021     8:29  1.2  day                31-7-2021 05:28
6-8-2021     9:47  1.0  day                 1-8-2021 05:09
6-8-2021    18:23   23  hr                  1-8-2021 22:54
6-8-2021    21:00   23  hr                  2-8-2021 03:19
6-8-2021    13:52   17  hr                  3-8-2021 00:31
6-8-2021    11:44   14  hr                  3-8-2021 16:12
6-8-2021     9:29   11  hr    15 S  177 W   4-8-2021 00:05
6-8-2021     7:50    8  hr    19 N  180 W   4-8-2021 15:44
6-8-2021     6:40    6  hr    38 S  108 W   4-8-2021 23:04
6-8-2021     6:26    5  hr     4 N  146 W   5-8-2021 03:27
6-8-2021     2:56  2.9  hr    25 N  112 E   5-8-2021 12:14
6-8-2021     5:07  2.5  hr    22 S  104 W   5-8-2021 16:37
6-8-2021     5:34  1.7  hr    29 S   24 E   5-8-2021 21:00
6-8-2021     4:49  1.6  hr    32 N  148 W   5-8-2021 21:00*

The last orbit was re-issued with an epoch almost similar to the previous orbit. This orbit is indicated by an asterisk and my final forecast.

Within current uncertainty windows, no meaningful prediction can be given about the location of the reentry yet. The values nevertheless listed in the tabe for latitude and longitude are nominal values only for the middle of the quoted uncertainty interval (which spans multiple revolutions around the Earth). Given the current uncertainty intervals, they are basically meaningless. Only an hour or so before the actual reentry, the uncertainty interval becomes less than one revolution.

The map below shows the nominal GMAT and last pre-reentry CSpOC TIP positions, plus the trajectory over the uncertainty window [EDIT: see update with final TIP at end of post!!!!]:
 
click map to enlarge

The rocket stage has a dry mass of about 4 tons and is about 4 x 4 meter wide. The diagram below shows the evolution of the orbital altitude of the rocket stage so far, based on CSpOC tracking data. Perigee is the lowest point in it's elliptical orbit around earth, apogee the highest point. Altitudes refer to the equatorial radius of the earth.
 
The last few orbits shows signs of trouble in determining the (quickly evolving) orbit (look at the perigee values for the last four orbits issued). The last available orbit was issued in two versions
 
click diagram to enlarge
 
On July 21, a few hours after launch, I filmed the Proton rocket stage during a pass over Leiden, accompanied by three pieces of debris that were never catalogued by CSpOC:
 
(EDIT: see update below movie!)




UPDATE: 

The final CSpOC TIP is in: 4:46 +- 1m UT (August 6) near 37.8 N 155.7 W, north of Hawaii (this is probably based on a SBIRS detection of the reentry fireball, given the very accurate +- of 1 minute).

This is very close to my last nominal GMAT estimate (4:49 UT near 32 N 148 W)! 

In all honesty: given the uncertainty intervals, that very good match is down to pure luck....


click map to enlarge






Thursday, 29 July 2021

Nauka and it's Proton-M rocketbooster

 

click image to enlarge

On 21 July 2021 at 14:58 UT, Roscosmos launched the new MLM-NAUKA module for the ISS from Baikonur, using a 3-stage Proton-M rocket. After its arrival at the International Space Station (ISS) on July 29, it will replace the PIRS module. Docking is set for 13:24 UT on the 29th.

The NAUKA launch came much belated: originally slated for launch in 2007 (!) it was postponed several times, amongst others after a problem with iron fillings in the engine plumbing was discovered.

With NAUKA, also ERA, the European Robotic Arm, was launched.

In order to make room for NAUKA, the PIRS module was undocked on 2021 July 26 near 10:56 UT, and deorbitted (using Progress MS-16 as a 'tug') into the southern Pacific Ocean on July 26 near 14:42-14:52 UT:

click map to enlarge

Soon after launch, it became apparent that NAUKA was in trouble. There was an initial telemetry problem, and (very worryingly) the main engines didn't work. Russian flightcontrol eventually used the auxilliary engines to raise the module's orbit.

click diagram to enlarge

For European observers, the first few nights after launch offered good sighting opportunities for the free-flying NAUKA (2021-066A), it's Proton-M 3rd stage (2021-066B), and the ISS, the three on the first evening passing within a few minutes of each other in evening twilight.

The images below show NAUKA and the Proton-M 3rd stage in evening twilight of 22 July, imaged with a Canon EOS 80D + EF 2.0/35 mm lens (first Nauka, then the Proton rb):

click image to enlarge

click image to enlarge

The Proton rb, and initially NAUKA as well, were  passing through a very low perigee (initially 187 km for the RB, 195 km for NAUKA) over Europe on the first nights. As a result, they passed at a very high, zipping speed through the sky, which was quite spectacular to see. They were bright too.

The video below shows the Proton RB zipping through a partially clouded Leiden sky at 21 July. In the video, it can be seen that three debris pieces accompanied it (these debris pieces were not catalogued by Space-track). Because of the very fast movement (the rocket stage was at only 187 km altitude at the time!) the video is a bit chaotic: I had to continually adjust the camera pointing:

 

 

This framestack from a part of the video shows the three debris pieces:


I initially had bad luck filming NAUKA: on two evenings I though I had restarted the video camera recording, but didn't. I succeeded on 23 July however:


The videos were made with a WATEC 902H2 Supreme + Zeiss 1.4/35 mm lens.

My current estimate for the reentry date of the Proton-M 3rd stage is within 2 days of August 6, 2021. I will issue regular updates in a new post once we come closer to this date.

Nauka was found to broadcast telemetry on 631.0 MHz. This is a spectogram of signals I received at Leiden, the Netherlands, in the evening of 28 July during the 18:56 UT pass, using an antenna I had quickly whipped up from scratch for this frequency:



 

UPDATE 29 July 13:45 UT:

Nauka successfully docked to the International Space Station at 13:29 UT (July 29) near 45.5 N, 110.2 E at an altitude of 425 km above earth surface.


UPDATE 30 July

It looks like Nauka's long stretch of bad luck continues. After docking, at 16:34 UT (Jul 29) an emergency situation developed when Nauka's thrusters suddenly started to fire on their own, without command, causing the ISS to loose attitude control for a while. Thrusters on the Zvezda module were trying to counter the Nauka thruster's firing, and Russian flight controllers were franticly attempting to get the Nauka thrusters to stop firing. In the end, the situation resolved when Nauka ran out of fuel.

Thursday, 8 July 2021

A possible missile test (AGM-183 ARRW, or not?) in the Pacific on July 10


 

Three related Navigational Warnings have appeared (NAVAREA XII  nr 304, 305 and 306) that together seem to define the trajectory of a missile test in the Pacific on July 10 between 9:00 and 18:00 UT, with a backup date on July 13:

 060344Z JUL 21
 NAVAREA XII 304/21(18).
 EASTERN NORTH PACIFIC.
 CALIFORNIA.
 1. HAZARDOUS OPERATIONS 100900Z TO 101800Z JUL,
    ALTERNATE 130900Z TO 131800Z JUL
    IN AREA BOUND BY
    33-08-45N 121-27-34W, 33-27-41N 121-29-48W,
    33-33-57N 120-11-14W, 33-14-46N 120-09-15W.
 2. THIS MSG 131900Z JUL 21.


 060353Z JUL 21
 NAVAREA XII 305/21(18).
 EASTERN NORTH PACIFIC.
 1. HAZARDOUS OPERATIONS 100900Z TO 101800Z JUL,
    ALTERNATE 130900Z TO 131800Z JUL
    IN AREA BOUND BY
    32-32-16N 129-10-43W, 32-08-05N 131-47-11W,
    31-53-04N 131-45-39W, 32-17-48N 129-09-11W.
 2. CANCEL THIS MSG 131900Z JUL 21.


 060445Z JUL 21
 NAVAREA XII 306/21(19).
 EASTERN NORTH PACIFIC.
 1. HAZARDOUS OPERATIONS 100900Z TOP 101800Z JUL,
    ALTERNATE 130900Z TO 131800Z JUL
    IN AREA BOUND BY
    31-13-21N 136-21-34W, 31-04-36N 137-16-57W,
    30-49-37N 137-15-27W, 31-01-22N 136-20-03W.
 2. CANCEL THIS MSG 131900Z JUL 21.

Below I have plotted the areas from these three Navigational Warnings on a map:

click map to enlarge

The three areas seem to define a ballistic trajectory for a missile fired, either from a ship, submarine or aircraft, in the Point Mugu Sea Range near the Channel Islands of California, in the general direction of (but maybe not as far as) Hawaii. The distance between the easternmost and westernmost area from the Navigational Warnings is about 1600 km. The distance to Hawaii is about 3950 km.

The question is whether the apparent line-up with the Pacific Missile Range Facility at Hawaii (for which there is a perpetual Navigational Warning) is coincidence or not (the map below shows a simple ballistic trajectory from the esternmost area in the Point Mugu Sea Range to Hawaii PMRF: the three areas and PMRF line up well):

click map to enlarge

If the line-up with Hawaii is coincidence, i.e. if we ignore a possible target area near Hawaii, then one option is that this is a flight test of the AGM-183A ARRW (Air-launched Rapid Response Weapon), a hypersonic missile launched from a B-52 aircraft. Little is known about the range of this new missile, and estimates differ: from 925 km to a quoted "almost 1000 miles". 

The latter is somewhat similar to the ~1600 km range between the easternmost area (NAVAREA XII 304) and westernmost area (NAVAREA XII 306) from the current Navigational Warnings. However, the similarity between "925 km" and "almost 1000" also makes me wonder whether kilometer and miles were mixed up in the latter statement. 1600 km equals 994 statute miles, or 863 nautical miles. 

Early June 2021, a test firing of AGM-183A was announced to probably take place this month (July 2021), which is one reason to suspect a connection of these Navigational Warnings to AGM-183.

If these Navigational Warnings indeed do refer the announced July AGM-183 test, then area 304 is where the missile is fired (from an airborne B-52), area 305 where the booster stage splashes down, and area 306 likely the missile target area.

The last (failed) test attempt of AGM-183A was in April, according to sources. It failed because the missile refused to separate from the aircraft.

The areas from the three July 10 Navigational Warnings are 100% identical those those of three earlier Navigational Warnings issued for May 17 (which I at that time, mistakenly probably, thought might be an SLBM test): Navigational Warnings NAVAREA XII nr 210, 211 and 212:

 


So either there was an aborted/failed test attempt in May as well, or these warnings (both the current and those for May 17) do not refer to AGM-183A.

The AGM-183A ARRW is a hypersonic missile fired from a B-52 aircraft. A rocket stage initially propels it and brings it to high altitude at the edge of space (i.e. not as high as an ICBM which truly enters space), after which it glides down and attains hypersonic speeds up to 6.86 km/s. It is still in its experimental phase with, as far as known, no successful test flight yet.


AGM-183 under the wing of a B-52 during a Captive Carry test. Image: US DoD (Giancarlo Casem)

 

EDIT: just after I hit the "publish" button Hans Kristensen alerted me to the arrival of an Ohio-class Nuclear Missile submarine in San Diego at July 7th. So, maybe an SLBM test after all (but not a standard Trident-II D5 test then, as the positions of the drop zones do not match with earlier Trident tests).


UPDATE 11 July 2021:

This Navigational Warning cancelling warnings NAVAREA XII 304, 305 and 306 just appeared, the wording of which ("operations completed") suggests that something did take place:

101832Z JUL 21
NAVAREA XII 314/21(18).
EASTERN NORTH PACIFIC.
CALIFORNIA.
CANCEL NAVAREA XII 304/21, 305/21, 306/21
AND THIS MSG, OPERATIONS COMPLETED.

Wednesday, 7 July 2021

Imaging objects from the 'Tubular Bells' launch

image: Virgin Orbit

During the first days of July, I have tried to image objects from the June 30 Virgin Orbit 'Tubular Bells' launch, that launched a number of smallsats including Brik-II, the first Dutch military satellite (see earlier posts here and here).

I so far managed to unambiguously image three objects from the launch. One of these is probably the LauncherOne upper stage, the other two must be payloads.

On July 2nd, I imaged objects A and B, A using a 2.0/135 mm and B using a 1.4/85 mm lens on the WATEC 902H2 Supreme low light level video camera. B was very faint and barely visible.

On July 4th, I unambiguously imaged objects B and H using a 2.0/135 mm lens.

Object A is relatively bright and well ahead of the other objects. It is in a somewhat lower orbit: a 418 x 504 km orbit, whereas the other objects are in a 496 x 522 km orbit. So object 2021-058A almost certainly is the LauncherOne upper stage.

Below is video of the A-object, shot on July 2nd with the 2.0/135 mm lens. The bright star top left is Polaris. I could not see the other objects (passing about 30 minutes later): for passes to the north of me, the illumination angle is less favourable than for passes to the south of me.





 

The B and H objects are fainter, and only visible during passes to the south of me. The video below shows them, faint but unmistakenly, during a pass in evening twilight on July 4th (sun at only 7 degrees below the horizon, so the sky background was still quite bright).

 


A fourth object, Object C, was possibly seen on July 2nd when I watched the pass live on screen, but I could not see it anymore when inspecting the footage afterwards. 

Objects D, E, F and G were not seen, but on all imaged passes observing conditions were not perfect (on July 2, cirrus clouds were invading the FOV around the time of the objects D, E, F and G passing; while on July 4th the sky background was still very bright).

It is not clear which object is which at the moment, although I have reasons to believe that Brik-II must be either object D, E or F. I have some suspicion that objects B and H are part of STP27-VPA. [edit: see updates below: Object H was, but B is not).

UPDATE:

I obtained even better imagery of the two STORK objects (B and C) on July 17:


 

UPDATE 14 Jul 2021:


Object B actually appears to be one of the STORK satellites, based on Dopplerfitting of  radiosignals received at 401.1 MHz (and first detected by Alicja Musial in Poland). Object C also appears to be a STORK, based on Doppler fitting of the radio signal.. 

Objects D and E are now listed by CSpOC as CNCE3 and CNCE1, which are part of STP27-VPA.

Objects F, G and H then are Brik-II, Gunsmoke-J and Halo-NET (the latter two are part of STP27-VPA), with not certain which is which.





UPDATE 16 Jul 2021

Object F is now identified as Brik-II. Object H (One of the two objects I imaged on July 4) is now identified as Gunsmoke-J 2

As, from radio Doppler fitting, we know objects B and C are the STORKS (not yet identified as such by CSpOC), this means object G must be Halo-NET:

Object A    LauncherOne rb

Object B    Stork

Object C    Stork

Object D    CNCE3*

Object E    CNCE1*

Object F    Brik-II

Object G   Halo-NET*

Object H    Gunsmone-J 2*

* part of STP27-VPA

Bob Christy has pointed out that there might be a swap of the A and G designation in the future, to make the A designation a payload rather than the RB.

Saturday, 3 July 2021

OT (but missile related): on Ian Fleming, Bond, and the fictional Moonraker ICBM



 Note:  an update was added at the end of the post, a day after initial publication

Recently, I was re-reading Ian Fleming's 1955 James Bond novel 'Moonraker'. The plot of this novel revolves around an ICBM test launch from a site on the coast of Kent. Re-reading the novel, I exclaimed at some point: "Ha, obviously a lofted trajectory!'.

 

 

That started me down a rabbit hole, for my next thoughts were: does the Moonraker test-flight and distances mentioned in the novel make sense? What if I modelled it in STK? 

So I tried, and discovered amongst others that Fleming apparently mixed up nautical miles and kilometers at some point. And used his car to measure distances.

 

Moonraker: the novel, not the movie

First, since most people will be familiar with the movie rather than the novel: the plot of the 1979 movie 'Moonraker' is quite different from the plot of the 1955 novel

Basically, the only things they have in common are the title and the name of the villain. In addition, both plots involve rocketry (but of a very different kind).

The 1979 plot of the movie starring Roger Moore involves Space Shuttles (one of which is named 'Moonraker') launched from the Jungle of Brazil; a stealth Space Station, (that has a radar cloaking device, totally ignoring that optically it would still be very visible and a naked eye object in the sky); and a plan by a megalomaniac Space Entrepreneur, Hugo Drax, to bombard Earth from that Space Station with a gas meant to exterminate the whole Earth population, except for a suspiciously Arian elite aboard his Space Station.

The 1955  novel plot on the other hand has no Space Shuttles and no Space Stations and, unusual for a Bond novel, all action takes place in the UK. The plot entirely revolves around the test launch of an experimental ICBM called 'Moonraker', developed by a megalomaniac entrepreneur called Hugo Drax, from an RAF test site on the coast of Kent in the UK. 

 

my 1965 Signet Book copy of the novel

 

The 1955 Moonraker plot

Let us first go into the plot of the novel a bit more in detail, for those not familiar with it, in order that you will better understand the analysis that will follow. Those of you who know the book, can move on to the next part of this post.

Somewhere in the first half of the 1950-ies, the development of a British ICBM and ICBM test site on the coast of Kent is being funded by a wealthy mineral merchant called Sir Hugo Drax, who ostensibly offers this service as a patriotic coronation present to the newly crowned Queen Elizabeth II. The ICBM, called 'Moonraker', is meant to end the danger of a new war (note that the book was written less than 10 years after the end of World War II) because it will be able to strike any European country trying to atom-bomb London. There is nuclear deterence for you, in a 1950-ies novel!

Sir Hugo Drax, the villain, has a shady history. He purports to be a former British soldier who is a survivor of a Nazi Werwolf attack at the end of WW-II, the bombing of an Allied Headquarters. In reality, he perpetrated that bombing but was caught up in the resulting explosion, after which he took on the identity of one of the British casualties. His real name is Graf Hugo von der Drache, and he is a German Nazi and former SS officer c.q. Werwolf operative, who is longing for revenge on Britain for the German defeat in WW II. 

He hatches a plan where, using his post-war accumulated wealth from the trade in Columbite (a metal vital for rocket engines) and his Columbite stash, he develops and builds the Moonraker, a single stage ICBM with a range of 4000 miles, ostensibly for the British Government. 

The rocket is to be launched from a RAF facility on the chalk cliffs of Kent, on the Channel coast between Kingsdown and St Margaret's Bay. The target for the test launch is an empty part of the North Sea some 80 miles from the launch site  (i.e. it is launched on a highly lofted trajectory). Drax, however, plans - and nearly succeeds were it not for the interference by Bond - to illicitly swap the instrument payload for a nuclear warhead, and target Buckingham Palace instead. He has hidden a homing device for that purpose in a house on Ebury Street, London, close to the Palace. He is in cahoots with the Soviets, who supply him with the nuclear warhead as well as a 50-man crew of German ex-Werwolf and rocket experts from Peenemünde. They also attempt to provide him an escape by submarine.

James "007" Bond has his first encounter with Drax when his MI6 superior M wants him to investigate whether Drax cheats at cards (!) at the private Club 'Blades' of which M is a member. Drax does indeed cheat, and Bond then tricks him in overplaying his hand, causing Drax to lose 15000 British Pound to Bond.

Shortly after that, Bond meets Drax again as Bond is send on loan to Scotland Yard Special Branch, after one of the Ministry of Supplies' security agents on the Moonraker site, Tallon (who had discovered something was afoot, having spotted the Soviet submarine delivering the nuclear warhead to Drax), is murdered. With the help of a Special Branch agent already embedded in the facility, a female agent called Gala Brand (interestingly, one that proves immune to Bond's charms), he tries to find out what secret the facility is hiding. Following an assasination attempt on Bond and Brand and some further shenanigans, Brand is found out and kidnapped after she steals Drax notebook, and realises that the gyroscope settings for the test flight have been changed such that it will come down at another target than the empty piece of North Sea intended (this target turns out to be Buckingham Palace: Drax has hidden a radio homing devive in a house on Ebury Street close to Buckingham Palace). 

After Bond, in pursuit of the car with the kidnapped Brand, is captured too, Drax unveils his personal history and evil revenge plan to them, and places them, bound, in the Moonraker launch silo, with the intention that the exhaust flame from the launch will burn them to ashes. Bond and Brand manage to get rid of their constraints, change the gyroscope settings back to the original values, close the explosion-resistant metal doors between the silo and Drax office, and lock themselves in the shower of Drax' office, letting the water run, to survive the blast (and there you though Indy locking himself in a fridge in "Indiana Jones and the Kingdom of the Crystal Skull" was jumping the shark!). The Moonraker is launched, and Drax and his men are picked up by the Soviet submarine that speeds off towards the north, into the original target area. Upon impact of the Moonraker in the target area in the North Sea, the nuclear warhead explodes, causing a tsunami that sinks the Soviet submarine (all hands on board including Drax perish) and incidentally also creates havoc on the Dutch coast. 


Leads and information from the novel

Fleming provides several pieces of information on the Moonraker ICBM and the locations involved in the plot that are hepfull for this analysis.

1. the Moonraker facility in Kent

The location of the RAF facility from where Moonraker is launched is at the edge of a chalk cliff near Kingsdown and St. Margaret's Bay on the coast of Kent, overlooking the English Channel. The flame trench (rather a tunnel) of the launch silo ends on the beach. The location can be positively geolocated to the grounds of the Walmer and Kingsdown Golf Club, at about 51.17 N, 1.40 E (see image below). The Golf Course, established in 1909, was requisitioned by the British Government during World War II and turned into a facility for the Army, RAF and Royal Navy. After the war, in 1948, it was handed back and turned back into a golf course. 

For the purpose of the novel, Fleming let the Ministry of War hold on to the site for a few more years than they in reality did.

 

location of the fictional Moonraker site, between Kingsdown and St. Margaret's Bay

 

Ian Fleming in fact was very familiar with this area of Kent. He had a lease on a cottage on the beach of St. Margaret's, called "Summer's Lease", just 2.5 km south of the site, where he spent long weekends and hollidays with his wife and friends. Given his wartime background in Navy Intelligence, the existence of the former military facility close to his weekend hideout will certainly have been known to him, even though it was no longer used by the Government by the time he wrote his novel.

2. The location of the homing device at Ebury Street, London

Drax' house near Buckingham Palace in London, where he places the radio homing device for the Moonraker, is described as 'a small house at the Buckingham Palace end of Ebury street' and 'just behind Buckingham Palace'. From the description given when Bond is in pursuit of Drax' car with the kidnapped Gala Brand (who is initially brought to the Ebury Street house), it must be only a few meters from the corner of Lower Grosvenor Place and Ebury Street (this is called Beeston Place now but formerly was part of Ebury Street), near the corner with Victoria Square, at approximately 51.4979 N, 0.1455 W.

 

location of Drax' fictional house on Ebury Street (image: Google Streetview)

 

This is indeed very close to Buckingham Palace: some 350 meters from the Palace building itself, and only a hundred yards (as stated in the novel) from the surrounding Palace grounds.

Again, this was a familiar spot for Fleming: between 1936 and late 1939 he himself lived in Ebury Street, at number 22B, some 250 yards further along the road (a little bit too far to entertain the idea, as I initially did, that the house in question actually is meant to be number 22B: this would however not fit the location descriptions well). Interestingly, the previous tenant of the same appartement had been the infamous British Fascist leader Oswald Mosley.

 

Ebury Street 22B, London, Fleming's former home (image: Google Streetview)


Moreover, around the time he was writing 'Moonraker', Fleming and his wife Ann lived (when in London and not at their Goldeneye estate in Jamaica, where Fleming did most of his actual writing) very close to the actual location indicated: at 16 Victoria Square. This is only some tens of meters (!) from the indicated location in Ebury Street, in what is basically a side street of it (see Google Earth image below). This would place Drax' house and the hidden radio homing device almost in Fleming's proverbial backyard!

[added note: pretty much the same conclusions are reached in this blogpost on the "Mapping the World of James Bond" blog, which I only found after I wrote mine].

Fleming's Victoria Square residence. Ebury street at left.


3. The effects of a nuclear bomb detonation in this location

So what would the effects be, on Buckingham Palace and London, of a nuclear detonation at the indicated spot on Ebury Street?

This of course depends on the yield of the nuclear warhead. The warhead in question is provided by the Soviets in the novel. It stands to reason that it could have been an RDS-4,  a 28 kiloton device that was first tested by the Soviets on August 23, 1953. It was their first mass-produced atomic bomb, compact, weighing 1200 kg, and went on to become one of the warheads used on the first Soviet strategic nuclear missile, the medium range R-5M (or SS-3).

So what would a 28 kiloton RDS-4 detonation in Ebury street do? I turned to Alex Wellerstein's fabulous NUKEMAP website to answer that question. Below are three maps, the first two for a ground detonation (second map is a detail of the first), the third for a detonation at 600 meter altitude:


28 kiloton ground detonation. Click to enlarge

28 kiloton ground detonation: detail of ground zero. Click to enlarge

 

28 kiloton airburst at 600 meter. Click to enlarge
 

The results would be dramatic for both central London and Buckingham Palace (and a much wider area of southeast Britain when we consider the nuclear fall-out). Buckingham Palace would indeed be in the major devastation zone, with almost certain 100% casualties.

Drax' attempt to bomb London was eventually foiled by Bond and Brand. But how about the original test target in the North Sea: where would that be located?

 

4. The location of the Moonraker test target area in the North Sea

Here, we run into a bit of a problem: Fleming's descriptions of where the North Sea test target area is located, are ambiguous, as distances and descriptions given by him do not fit each other

He mentions a distance of '80 miles' from the launch site, but also describes it as being on a line 'between the Frisian Islands and Hull'. These two indications cannot be well reconciled as the mentioned line Hull-Frisian Islands is much further away than 80 miles, in fact over twice as far, close to 280-290 km or 175-180 miles (depending a bit on which of the Dutch Frisian islands you take). I will return to this later in this post.

What is also implicated in the novel, is that the bearing of this location as seen from the launch site is at an approximate 90 degree angle to the bearing of the secret target in London. This would place the bearing to the North Sea target site as seen from the Moonraker facility in Kent at about 19.5 degrees from north. This bearing would intersect a line between Hull and the Frisian Islands at about the middle of the latter line, near 53.2 N, 2.6 E, some 80 km from the nearest British and 145 km from the nearest Dutch coast: which seems very reasonable if you want it to be as far as possible from any land, at that range. By contrast, a distance of 80 miles along this bearing would place the spot much closer to the British coast, at around 52.26 N, 2.03 E, about 25 km out of the coast near Lowestoft.

Fleming seems to have choosen the "80 miles" value in order to get a similar distance between the Kent launch site and the North Sea target area, as the distance between the Kent launch site and Ebury street in London. This reveals something interesting: the real distance to Ebury street as seen from the Walmer and Kingsdown site is actually a bit shorter than 80 miles: 114 km or about 71 miles, 10 miles short. So why the '80 miles' then?

The likely answer is that Fleming did not take this distance from a map, but measured it by driving the distance in his car (or rather, have his stepson do that). Google Maps tells me that the road distance (as opposed to the distance as-the-crow-flies) between Fleming's house in St. Margaret's Bay and Ebury street in London is 81 miles. It is known that Fleming actually had his stepson drive the distance in order to check the fastest possible driving time between the two locations (which he needed for the car chase scene when Gala Brand is kidnapped and brought to Ebury Street).

Incidentally, the value helps establish that the miles mentioned in the novel are statute miles, not nautical miles. This is relevant, as in rocketry either kilometers or nautical miles are generally used, while Fleming, as a former Navy Intelligence officer, would have been familiar with nautical miles too. The average British novel reader on the other hand, would interpret 'miles' as statute miles, and that is what they appear to be here.

There is a potential for confusion here, and perhaps that is what happened and created the mismatch between '80 miles' and 'on a line between Hull and the Frisian Islands'.

Let us plot some of these distances (and the highly lofted trajectories involved) in a map. This is an oblique view of the situation, created with STK: note that the indicated 80 mile radius is in statute miles, while the outer circle, touching the line between Hull and the Frisian Islands, is 129 nautical miles instead (I did this for a reason, see below). For reference, 1 statute mile = ~1.6 km, and 1 nautical mile = ~1.8 km.


click to enlarge

One way Fleming could have introduced the erroneous description of the target area being "on a line between Hull and the Frisian islands" is by plotting the distance on a nautical map, e.g. an Admiralty chart, and making a mistake with the map units (perhaps after a drink too many). 

The 1950-ies era Admiralty charts had drawn scale bars in feet, nautical miles and meters, but not in statute miles, so Fleming might have converted statute miles to (kilo-) meters. Since 80 statute mile equals ~129 km, did Fleming perhaps by mistake plot 129 nautical miles instead of 129 kilometer? This would bring you close to a line between Hull and the southernmost of the Frisian Island. 

Alternatively, he could have mistakenly converted 180 miles instead of 80 miles, to kilometers (180 statute miles is ~290 km), which would bring you slightly further out, on the line between Hull and the northernmost Frisian Islands, at about 155 nautical miles.

5. The Moonraker maximum range and delta V

Before going to Drax' Kent facility, Bond is briefed on the Moonraker missile. From this briefing, we learn that the missile has a range of about 4000 miles (6437 km), apogee (the highest point it reaches above earth surface) at 1000 miles (1609 km), and can reach a speed of 15000 miles an hour. The latter translates to about 6.7 km/s.

Using STK, I modelled a missile trajectory with a range of 6437 km and apogee at 1609 km. For such a trajectory, I get a delta V of 6.44 km/s, or about 14417 miles/hour, so Fleming's ~6.7 km/s is not far off, certainly if we allow the "15000 miles per hour" to be a rounded-off value (during te briefing, this is said to be a value "in te neighborhood off"). In that sense, the specifications of the Moonraker appear realistic and correct.

The Moonraker itself is a single stage rocket: from the descriptions basically a V2 on steroids. That raises some eyebrows given the quoted 6400 km range. While both the USA and Soviet Union worked on single stage ICBM designs during the 1950-ies, none of this ever went beyond the design stage, and that was probably for a reason. The closest to it that did fly (and here I am obliged to the combined Hive Mind of Missile Twitter for their help) and had a range similar to the Moonraker was the US SM-65 Atlas, which first flew in 1957. This was however a "1.5 stage" rocket as it had two auxiliary jettisonable side boosters.

But let that be, and let us accept the premise of a single stage Moonraker. With a 4000 mile (6437 km) range, the whole of Europe and a considerable part of the Soviet Union would be in range: only eastern Siberia would not be. In that sense, the Moonraker missile would fulfill its quoted deterence role.

 

click to enlarge

So what would be the apogee of the highly lofted Moonraker test shot into the North Sea?

I used the 6.4 km/s delta V value I calculated, to determine the apogee altitude for the lofted trajectory
(a 'lofted trajectory' is where you fire your missile at full engine capacity, so you can test its maximum performance, but limit your horizontal range, by firing it under a very high angle, almost straight upwards. This way you can monitor the missile over almost its full trajectory from the launch site, and avoid overflying neighbouring countries. North Korea for example did this on several of their ICBM test launches).

The 80 statute mile and 129 nautical mile ranges respectively give quite similar results: an apogee at 3169 resp. 3168 km altitude. Quite a lofted trajectory indeed! It is only slightly less than the 28 July 2017 North Korean lofted test of a (two stage) Hwasong-14 missile.

The image below shows a maximum range operational trajectory (red) for the Moonraker, as well as the lofted trajectories for target sites at 80 statute miles (solid white), 129 nautical miles (dashed white), and the secret London target (dashed yellow)

click to enlarge


Conclusions

Fleming appears to have done his homework well with regard to ballistic missiles: his speeds, apogees and maximum ranges match. He did make a curious mixup in defining the North Sea target area for the lofted trajectory test around which the novel revolves: his stated distance in miles does not match with the description of "on a line between Hull and the Frisian Islands". Perhaps, he mixed up kilometers and nautical miles when measuring distances on a map. 

As an aside, we can deduce that he measured the distance between the launch site on the Kent coast and the secret target near Buckingham Palace in London by driving the distance in a car, rather than measuring it on a map. 

All locations mentioned in the novel were familiar to Fleming, as he lived or had lived in houses quite near them. 

Conspicuously absent in the novel: grid fins!


ADDENDUM 4 July 2021

Following publication of this post, some great questions were raised on Twitter about the fate of the Soviet submarine. How could it get to the impact area so soon?


In fact, with such a highly lofted trajectory, it would take the Moonraker some 38 minutes to complete its flight, from launch to target impact, giving the Soviet submarine some time to travel northwards. And the Soviet submarine is not sunk by the immediate blast effect of the nuclear detonation, but by the resulting tsunami wave, which travels further than the blast wave.

BBC Radio reporter Peter Trimble, who due to the tsunami perishes aboard the HMS Erganzer while live-reporting the test flight, tells his audience that he and the Navy ship are just north of the Goodwin Sands, with the target area some "70  miles north" of him. He could see the Moonraker launch, "must have been ten miles away". So this all places him some 10 miles (16 km) from the launch site.

He sees the Soviet sub at a distance of about 1 mile, heading north towards the impact area. After it submerges, he tells the audience that the ASDIC operator says it is travelling at 25 knots, or about 46 km/h (this is a bit faster than the Soviet submarines of this era were actually capable off: their peak speed when submerged was near 16 knots). This means that from the moment of launch of the missile (when the submarine left with Drax cum sui) to the moment of impact of the missile, it could have travelled some 29 kilometers towards the target area. This would place it some 100 km south of the impact area (going from the "80 mile" figure for the impact area distance to the launch site) at the moment of impact and nuclear detonation. Not quite in the impact area, as Trimble suggests.

I used an online tsunami speed calculator to get an idea of how long it would take the tsunami wave generated by the nuclear explosion to reach the HMS Erganzer and the submarine. A look at a bathymetry-map shows that the relevant part of the North Sea is between 25 and 50 meters deep. Bond's superior M, at the end of the novel, mentions that the wreckage of the submarine is located at a depth of 30 fathoms, or 55 meter. If we go with that value, a tsunami wave would travel at a speed of about 23 meter/s (or 83 km/h). It would take it some 80 minutes to reach HMS Erganzer. It would reach the Soviet submarine, travelling towards the wave at 46 km/h, a bit earlier, roughly 50 minutes after the detonation. The submarine by then, assuming a course straight towards the impact point, would be some 70 km from the impact point when it meets the tsunami wave.

This clearly does not tally with the live radio report, which suggests the submarine is in visible range of the HMS Erganzer when the tsunami hits (with both vessels hit at about the same moment). It is also clear that the sequence of events would take much longer than the novel implies: in the novel, which quotes a verbatim live radio report, it looks like the events unfold in matters of seconds.

Of course it is all fiction, and Fleming never meant Bond's adventures to be a poster-child for realism, so we should not be surprised by these lapses in the plot. Although it surprises me that Fleming, as an ex Navy Intelligence Officer, get's the missile part quite right, but not the nautical part!

I have been looking for information on whether a 28 kiloton nuclear explosion would be able at all to generate a tsunami strong enough to create havoc at 100+ km from the detonation site. I found this but the math involved is a bit too complex for me. Some of the approximate scaling equations at the end of the book, which are however for deep water, would suggest it to be not a big deal at this distance, in fact.

As a last note: Trimble, in his radio broadcast, mentions at a certain moment: "Twelve minutes past noon. The Moonraker must have turned and be on her way down". If we take this to mean that apogee was reached at 12:12 GMT, then, given the trajectory I modelled in STK, we can determine that launch of the Moonraker was around 11:53 GMT. Bond manages to reset the gyroscopes four minutes before the launch moment, Fleming tells us, which would be 11:49 GMT then, which could fit as Fleming also tells us that Bond, looking at his watch when he does so,  is leaving his hiding place for the missile at 11:47. This gives him 2 minutes to get to the missile and do his thing, and then two more to get back from the missile to Brand at Drax' office. In fact he must have done it in a minute, as he spends at least one minute (as at some point he says "only one minute more [to launch]" in the office before the launch moment.