Thursday, 30 May 2019

Numbers: the SpaceX Starlink constellation in perspective with what is currently orbiting earth

click to enlarge

The image above was taken by me in the evening of May 28 with a Canon EOS 60D and Samyang 1.4/85 mm lens. It shows a part of the now already dispersing "train" of SpaceX Starlink objects. They briefly flared, one by one, while passing north of Corona Borealis.

In this post, I want to put in perspective what adding 12000 Starlink objects to the current population of satellites orbiting Earth means.

Quite some numbers are floating about in articles and on internet, concerning current numbers of objects orbiting Earth. I made a tally this morning, including both classified and unclassified objects. Datasources were the database of classified objects maintained by Mike McCants; CSpOC's satellite catalogue for all unclassified objects; and the UCS Satellite database for the number of operational satellites. Numbers given in the diagrams in this post are rounded numbers.

A number of  "44000" is floating around the internet regarding the number of objects orbiting earth currently. This figure is wrong: CSpOC is tracking some 23000 objects of which some 18000 are well-tracked and can be indentified as to origin. This excludes, of course, objects that are not well-tracked, or are not tracked at all (e.g. because they are very small), the exact number of which is unknown. In the remainder of this post, we will restrict us to the ones that are known. These are generally objects larger than 10 cm.

In addition, our amateur network tracks some 300 additional "classified" objects.

The "44000" figure comes from the fact that the catalogue numbers (the unique identifiers given to each object) have now added up to 44306 entries: however, this concerns all objects catalogued since 1957, including many objects that have since re-entered into the atmosphere.

So the correct number to go with for objects currently in orbit around Earth and well-tracked, is slightly over 18300 objects.

Of these 18300, about 5500 are payloads, both operational and defunct. The UCS database currently lists some 2000 operational payloads, leaving 3500 defunct payloads.

In addition to operational and defunct payloads, there are some 2000 spent rocket boosters orbiting our planet. The remainder, almost 11000 objects, concerns other space debris (including sometimes very small objects, only detectable by radar).

Here I have visualized these basic data in the form of a pie-diagram:

click to enlarge

So, in perspective to these numbers for the current population of Earth-orbiting objects, what will be the result of the addition of  the 12000 planned objects in the Starlink constellation? How does their number compare to the other objects?

In the pie diagram below, you can see that adding 12000 Starlink objects would mean they would represent about one third of all objects orbiting Earth:

click to enlarge

In the diagram, I have lumped payloads and rocket stages as these generally represent larger objects, and put the rest into "other debris". The latter category includes very small objects, fragments from exploded rocket stages and disintegrated satellites. The diagram includes objects in geostationary orbit.

Starlink will operate in Low Earth Orbit. Musk's plan is to launch 1600 satellites to an operational altitude of 550 km; another 2800 to an operational altitude of 1150 km; and a whopping 7500 to an operational altitude of 340 km.

click to enlarge

When we only count objects with a perigee below 1150 km, the topmost orbital altitude shell of the proposed Starlink constellation, there are currently some 13800 objects orbiting up to these altitudes. Adding 12000 Starlink objects would almost double the population total.

click to enlarge

When we only count objects with a perigee below 550 km, which includes the lower and middle of the three orbital altitude shells of the proposed constellation, some 2900 objects are currently orbiting up to these altitudes. Adding almost 9100 Starlink objects (the sum of the lower and middle shell objects), would mean that about three quarter of the resulting population would be Starlink satellites (!).

click to enlarge

In other words: the amount of objects added by Starlink, compared to the current population of objects, is certainly significant, especially where it concerns the lower parts of Low Earth Orbit.

Below 550 km, the population would increase to three times as much as currently - and this includes all very small debris pieces that can only be observed by radar in the tally. If we restrict the comparison to the larger objects, it means an at least five times increase in object number. That is truely significant.

With these massive additions by just one company, the question arises whether some kind of regulation is in order, e.g. through the UN. If not, we allow one company to, basically, take over and massively dominate Low Earth Orbit. There are all kinds of ramifications: like, will current Space Tracking Networks be able to deal with the increased detection load on their networks? (if not, space will become less safe).  What will this do to our night sky? Etcetera.

(with regard as to what might be the effect to our night sky, I refer to this twitter tread by Cees Bassa, who has cracked some numbers as to visibility)

It seems to me that the World, the international community as a whole instead of one US corporation,  should have some say into this. I am otherwise a fan of Elon Musk, who undoubtedly has given space exploration and space technology a new impetus and good shake-up: but concerning Starlink, this all seems not well thought out to me.

The Starlink "train" on 28 May 2019. Click to enlarge

Saturday, 25 May 2019

WOWOWOW!!!! A SPECTACULAR view of the SpaceX Starlink satellite train!

On 24 May 2019 at 2:30 UT, SpaceX launched STARLINK, a series of 60 satellites that is the first launch of many that will create a large constellation of satellites meant to provide global internet access.

Just short of a day after the launch, near 22:55 UT on May 24, this resulted in a spectacular view over NW Europe, when a "train" of bright satellites, all moving close together in a line, moved across the sky. It rained UFO reports as a result, and the press picked it up as well.

There were no orbital elements for the objects available yet on Space-Track, but based on the orbital information (53 degree inclination, initially 440 km orbital altitude) I had calculated a search orbit and stood ready with my camera.

My search orbit turned out to be not too bad: very close in sky track, and with the objects passing some 3 minutes early on the predictions. And what a SPECTACULAR view it was!

It started with two faint, flashing objects moving into the field of view. Then, a few tens of seconds later, my jaw dropped as the "train" entered the field of view. I could not help shouting "OAAAAAH!!!!" (followed by a few expletives...).

Here is the video I shot, be prepared to be mind-blown!

The video was shot, in a partly clouded sky, with a WATEC 902H low-light-level surveillance camera, equipped with a Canon FD 1.8/50 mm lens. I could count at least 56 objects in the original video.

Over the coming days the "train" of objects will be making 2-3 passes each night. As they are actively manoeuvering with their ion thrusters, they will be more spread out with each pass, so the "train" will probably quickly dissipate.

The objects were launched into a ~440 km altitude, 53 degree inclined orbit. Using their ion thrusters, they will raise their orbits to ~550 km the coming days/weeks.

Sunday, 5 May 2019

Orbital Reflector has joined the Dark Side

image: Nevada Museum of Art

Orbital Reflector will not shine brightly in our night sky. The extraordinary Art project by Trevor Paglen and the Nevada Museum of Art (see my earlier post here) has run on the cliffs of American politics, and was sadly lost as a result.

In a May 1 press announcement by the Nevada Museum of Art, it was indicated that contact with the satellite has been lost, so the command to inflate the balloon can no longer be sent.

That command should have been sent weeks ago, but was postponed because of, basically, the childish state of US politics. The satellite operators needed to have FCC approval to inflate the balloon: approval that should have been given after enough space had been created between the various payloads of the SSO-A launch.

But then, as the Nevada Museum of Art press release puts it:

"two unanticipated events occurred: 1) Due to the unprecedented number of satellites on the rocket, the U.S. Air Force was unable to distinguish between them and could not assign tracking numbers to many of the them. Without a tracking number to verify location and position, the FCC could not give approval for inflation; and 2) The FCC was unavailable to move forward quickly due to the U.S. government shutdown."

The US Government shutdown referred to was the US Federal shutdown imposed by President Trump, when US Congress did not agree to his proposed spending bill for 2019 (notably, the demand for $5.7 billion in funding for his proposed Border Wall). The shutdown lasted until the end of January 2019 (the longest Federal shutdown ever) and affected the functioning of several Federal agencies including the FCC.

As Trevor himself put it recently:

"We needed to coordinate with the FCC to deploy the reflector, but there was no one to take our calls: there was no government".

In the weeks immediately after the SSO-A launch, the Orbital Reflector operators were in radio contact with the satellite. But over time, the radio pings became weaker and by the time the Federal shutdown was finally over and the FCC had resumed functioning again, the radio of Orbital Reflector had fallen silent.

I am very sad about this outcome. I had looked forward to observing and tracking Orbital Reflector, both to admire it as an unusual global piece of art, and to see how its orbital evolution over time would (or would not) match my earlier modelling. I am also sad because I know how much time, energy and thought Trevor, who is a personal friend, has put into this art project, one of his most challenging so far. It is a pitty it worked out this way, even more so because it happened just because of petty US politics, not flaws in the concept.

But even though the original plan was ruined due to a President that was trying to blackmail Congress into submission, Orbital Reflector still serves a goal. One of the goals of Orbital Reflector, besides being seen, was to trigger debate about who owns space, what does and does not belong there, and who gets to decide about that. That debate certainly happened around Orbital Reflector (see a previous post). In that sense, Orbital reflector was a success.

I also like how Orbital Reflector, which was meant to be the very opposite of the dark shady, anonymous and unseen use of space by the military, now has joined the Dark Side itself: unseen, but there, orbiting in anonymity, and in this state as a result of geopolitical power play the effects of which reach all the way into space.

In a way, Orbital Reflector now has become a symbol of how geopolitical powerplay corrupts everything, even Space, which in a  way was the very thing it was intended to make people think about. That's art for you, even if this developed in a way that was not quite foreseen.

Wednesday, 1 May 2019

Why India's ASAT test was reckless (updated)

Today, I published a large article in The Diplomat:

"Why India’s ASAT Test Was Reckless. Publicly available data contradicts official Indian assertions about its first anti-satellite test"

The paper is online here:

Summary - In this paper, I present an OSINT analysis of data available from Indian and US sources. From missile telemetry data visible in a DRDO released video (!) I reconstruct the last 2.7 seconds of the missile's trajectory relative to the trajectory of Microsat-R, showing that the missile hit the satellite under a clear upwards angle. I also discuss what can be gleaned from the orbital elements of the 84 debris pieces tracked so far.

The main conclusion is that the ASAT test was conducted in a less responsible way than originally claimed by the Indian government. First, the missile hit the target satellite on a clear upwards angle, rather than “head-on” as claimed by DRDO. Second and third, the test generated debris with much longer orbital lifetimes (up to 10 times longer), which ended up at much higher altitudes than the Indian government is willing to admit.

As much as 79 percent of the larger debris fragments tracked have apogee altitudes at or above the orbit of the International Space Station. Most of the tracked debris generated by the test orbits between 300 km and 900 km altitude, well into the range of typical orbital altitudes for satellites in Low Earth Orbit. As these debris fragments are in polar orbits, they are a potential threat to satellites in all orbital inclinations at these altitudes.This threat will persist for up to half a year (rather than the 45 days claimed by the Indian government), with a few fragments lingering on (much) longer, up to almost two years.

UPDATE, 2 May 2019:

On Twitter, I was asked to elucidate a bit more on how I did the analysis.

The delta V calculations have been done using equations from chapter 6 of "Space Mission Analysis and Design", third edition (Wetz and Larson (eds.), 1999).

The missile trajectory relative to the satellite trajectory was calculated with quite simple goniometry from the telemetry values (azimuth, range and elevation from the camera site) extracted from the DRDO video. Azimuth and range allow to calculate delta X, delta Y relative to the camera site on the flat reference plane. Elevation and range allow to calculate altitudes above the reference plane. AS the calculations are done with respect to a flat reference plane tangent to the earth surface at the camera location, this approach is sufficient. Earth curvature and true altitudes above the earth surface are irrelevant, a we are only interested in relative postions with regard to the satellite vector of movement.