click images to enlarge
The orbit of the satellite is unusual, as it is retrograde, and in fact resembles a retrograde version of the Lacrosse orbits. There is some speculation as to the why of this.
The object currently is actively manoeuvring: when I captured it, it was 34 seconds late with regard to just one day old elements after one such manoeuvre. The apparent intention is to create a frozen orbit.
A new lens added to the equipment
This weekend saw the first active use of a new piece of optics added to the repertoire: an old, DDR-made, Carl Zeiss Jena Sonnar MC 2.8/180mm lens. The lens itself is renowned, for its sharpness. Originally made for 6x7 cameras, it provides very good sharpness from edge to edge on a DSLR image. Fitted with a P6 to EOS adapter, it works perfectly on my Canon EOS 450D. It yields almost twice the aperture of my EF 100/2.8, and hence will be used to capture faint distant objects such as Molniya orbit objects. The lens is of very heavy build: solid metal and glass with no plastics. It weights 1.5 kg!
Below is an image of the optics I am now using in my observations: a Canon EF 2.5/50 mm Macro used for LEO and some GEO objects; a Canon EF 2.8/100 mm Macro USM used fro MEO and HEO objects; and the Carl Zeiss Jena Sonnar MC 2.8/180 mm for HEO and GEO objects.
click image to enlarge
The advantage of the lens is that it goes deeper in magnitude of the objects it captures. A disadvantage is that it has a smaller FOV (6.8 x 5.0 degrees) which, with the software I use for astrometry (AstroRecord), means I have to carefully select the part of the sky to aim for (it should have enough stars brighter than +8 and at last 3 stars with a Flamsteed number, as the AstroRecord sequence starts with identifying 3 of those after which it starts to auto-identify stars). Especially the requirement of the 3 Flamsteed numbers in such a small FOV is limiting.
Anoher drwaback of this lens is that with 1.5 kg it is heavy! It is at the edge of what my lightweight camera tripod can carry, and hence vulnerable to vibrations.
On October 9 and 10 I used the lens to capture two Molniya-orbit (HEO) objects: USA 184 (06-027A), and USA 198 (07-060A, SDS 3F5). As a stray, it also captured another Molniya, the Russian US-KS Oko IR missile detection platform Kosmos 2393 (02-059A), and an old Russian rocket body in LEO (Kosmos 411 r, 71-041J). The image sequence shows that Kosmos 2393 was flaring at that time (20:14:02 - 20:14:12 UTC, 9 Oct 2010)
Below are two parts (at full pixel resolution) of one image that contained both USA 184 and Kosmos 2393 (the latter close to the edge of the image); and one of the images of USA 198.
click images to enlarge
No comments:
Post a Comment
Note: only a member of this blog may post a comment.